September 25, 2024

Semiconductor Market and Test Technology 2024 SEMI Korea Test Tutorial

James Jinsoo Ko

ATE Applications, South Asia & Korea VP

© Cohu, Inc. All rights reserved.

Agenda

- Semiconductor Market
- History of Electronics and Semiconductor Technology
- **Structure of Automatic Test Equipment (ATE)**
- □ Advanced ATE Technology
- **Q&A**

Semiconductor Market

Semiconductor Market Revenue

Global Semiconductor Sales Increase 18.7% Year-to-Year in July

- The Semiconductor Industry Association (SIA) today announced global semiconductor industry sales hit \$51.3 billion during the month of July 2024, an increase of 18.7% compared to the July 2023 total of \$43.2 billion

September 25, 2024 1) Source: Press Release: 09/03/24 by Semiconductor Industry Association Page 4

WSTS Semiconductor Market Forecast Spring 2024

Global semiconductor billings (billion US\$) - 12MMA

WSTS Semiconductor Market Forecast Spring 2024

Summary

Coring 2024	Amounts in US\$M			Year on Year Growth in %		
Spring 2024	2023	2024	2025	2023	2024	2025
Americas	134,377	168,062	192,941	-4.8	25.1	14.8
Europe	55,763	56,038	60,901	3.5	0.5	8.7
Japan	46,751	46,254	50,578	-2.9	-1.1	9.3
Asia Pacific	289,994	340,877	382,961	-12.4	17.5	12.3
Total World - \$M	526,885	611,231	687,380	-8.2	16.0	12.5
Discrete Semiconductors	35,530	32,773	35,310	4.5	-7.8	7.7
Optoelectronics	43,184	42,736	44,232	-1.6	-1.0	3.5
Sensors	19,730	18,265	19,414	-9.4	-7.4	6.3
Integrated Circuits	428,442	517,457	588,425	-9.7	20.8	13.7
Analog	81,225	79,058	84,344	-8.7	-2.7	6.7
Micro	76,340	77,590	81,611	-3.5	1.6	5.2
Logic	178,589	197,656	218,189	1.1	10.7	10.4
Memory	92,288	163,153	204,281	-28.9	76.8	25.2
Total Products - \$M	526,885	611,231	687,380	-8.2	16.0	12.5

Volume Fabs Starting Construction from 2023 to 2025

$2023: 33 \rightarrow 2024: 26 \rightarrow 2025: 11$

※ 型

Source: C.G. Dieseldorff, Market Intelligence Team (MIT), July 8, 2024. September 25, 2024 Page 7 Copyright 2024 SEMI

Volume Fabs Starting Construction: '20 to '22 vs '23 to '25

Some slow down seen in 2023-2025

Some Fab buildings have multiple cleanrooms.

This counts construction start of individual Front End Fab buildings only (including EPI.) We adjust Fab count to company reports.

The 2020 & Beyond Era and Government Interventions

- Pandemic triggered high demand for semiconductors
- Combined with supply chain issues, this caused a severe chip shortage
- Geopolitical tension, such as China export restrictions, and increased government funding caused a regional shift in activities

September 25, 2024Source: C.G. Dieseldorff, Market Intelligence Team (MIT), July 8, 2024.Page 9Copyright 2024 SEMI

Milestones and Timing of New Fab Projects

□ Fabs starting construction in 2023 will start equipping in 2024 (earliest) – if no other hurdles

Timing depends on many factors

- 1. Size of Fab (25K wpm vs 150K wpm)
- 2. Wafer size (12", 8", <8")
- 3. Product Type (leading edge logic, memory, power, etc)
- 4. Location
- 5. Company's strategy and budget
- 6. Market condition
- 7. Supply chain
- 8. Availability of Labor/Talent

Total Fab Equip. Spending: Comparing Different Periods

Pre-Pandemic (2012-2019) vs. 2020 & Beyond (2020-2027)

- From 2020 to 2027, US\$ 902B will be invested into Fab equipment globally, boosting by US\$ 548B or 155% compared to 2012 to 2019.
- China is adding most in 2020 to 2027 with 382% or US\$ 200B.
- Europe/ME and Americas are in 2nd and 3rd place, respectively percentage-wise but not in actual dollar values.

September 25, 2024Source: C.G. Dieseldorff, Market Intelligence Team (MIT), July 8, 2024.Page 11Copyright 2024 SEMI

Toal Fab Equip. Spending: Spending by Product Type

2020 & Beyond: Comparing 2020-2023 to 2024-2027

In 2024 to 2027, US\$ 538B will be invested into Fab equipment globally, boosting by US\$ 174B or 48% compared to 2020 to 2023. Three regions re-emerge, one emerges, but China, Korea and Taiwan still rule

History of Electronics and Semiconductor Test Technology

History of Semiconductor Technology

Overview – Semiconductor IC, Test, and Interface

What do I need to know to test integrated circuits?

Spec generation & Test requirement

Test, and Interface

What do I need to know to test integrated circuits?

1. Semiconductor Design

Spec generation & Test requirement

2. Semiconductor Test 3. DIB and PIB Interfacing IC and ATE 4. Test programming and Debugging 5. Correlation and production testing

Tester (ATE)

General IC Tests

Test	Stage of IC Manufacture	Wafer-or Chip-Level	Test Description
IC Design Verification	Pre-Production	Wafer level	Characterize, debug and verify new chip design to insure it meets specifications.
In-Line Parametric Test	Wafer fabrication	Wafer level	Production process verification test performed early in the fabrication cycle (near front-end of line) to monitor process.
Wafer Sort (Probe)	Wafer fabrication	Wafer level	Product functional test to verify each die meets product specifications.
Burn-In Reliability	Packaged IC	Packaged chip level	ICs powered up and tested at elevated temperature to stress product to detect early failures (in some cases, reliability testing is also done at the wafer level during in-line parametric testing).
Final Test	Packaged IC	Packaged chip level	Product functionality test

The Value of Test

□ Why test devices?

- The cost of return devices is much higher
- Miniaturization complicates board rework, if needed to replace bad device
- Manufacturers reputation is important due to competition
- Consumer market expectations of highquality product

Known-Good-Die and Stacked Die Devices

Figure TST1 - Smart Manufacturing Test Flow for Stacked Die Devices

(1)

Transition to More Probe Test – Known Good Die

- Most ATE is sold for Probe Test
- Most AP and PMIC devices are trimmed at probe
- □ Major drivers are cost reduction or CSP/Fan-Out Packaging

Save Defects More "Test" Now Includes More Functions

- "Test" is no longer just seeing if a part is good or bad
- □ It is part of the manufacturing process
 - Trimming/calibrating
 - Grading for speed, Accuracy, etc.
- In many cases, many devices would have zero yield if they didn't go through the trimming/calibration process
- This is a major contributor to COT (cost of "test") that is increasing and needs some process/DFT or technology change

Structure of Automatic Test Equipment (ATE)

Test System Architecture

- 1960 : Integration of stacked independent options connecting through back born control bus
 - GPIB / IEEE-488 by HP from late 1960 and 1975
- 1970: Start to use a microcontroller to ATE RISC vs. CISC controller
 - <u>VXI</u> from 1980
 - <u>PXI</u> from 1992
 - <u>LXI</u> -Standard defines the communication protocols for instrumentation and data acquisition systems using Ethernet. Proposed in 2005 by <u>Keysight</u>
 - JTAG/Boundary-scan IEEE Std 1149.1
 - USB (380MBS) and RS-232

Test System and Resources

Mixed Signal Test System (1970's-1980's

ATE System Architecture

Main kiosk

- Main power supply unit
- Reference Clock source
- User computer and Test computer
 - RISC based or CISC based
- System cooling solution
 - Air cooling or Liquid cooling

Test head

- Fast timing and control bus pattern control
- High Speed Data transfer bus to DSP
- High performance multi-core DSP
 - Background signal move and processing)
 - Producing fast, stable and repeatable test results

Calibration option

• TDR, DC, AC, RF, Skew, Capacitance

DIB and PIB

SoC Test with General Universal Instrument Slots

Test System Communication

Modern ATE System Architecture

Example Diamondx Single and Dual Test Heads

Example Diamondx Configuration with RF option

Figure 6. RedDragon RF Brick installed on Diamondx tester

Example Diamondx instruments

Diamondx – Broad set of instruments in a scalable platform

Workhorse Configurations (15-20 Instruments)

Heavyweight Configurations (30-40 Instruments)

Current deployment: >1,100 systems worldwide w/ ~60% at OSATs

- 5, 20 and 40 slot scalable infrastructure
 Capable of >7,000 resources
- Full-featured high-density instrument suite covering digital, analog, DSP & RF
 - Digital: Up to 192 ch/bd
 - VI: Up to 72 ch/bd
 - o RF: Up to 32 Universal Ports
- >99% parallel test efficiency
- Low noise floor
- Top-Hat transforms load board circuitry into tester resources
- Instancing improves UPH at existing site count [Coming in 2024]

Test System Diamondx – Digital Multimeters

Keysight / Agilent 34401A Digital Multimeter, 6½ Digit

The Agilent Technologies 34401A multimeter gives you the performance you need for fast, accurate bench and system testing. The 34401A provides a combination of resolution, accuracy and speed that rivals DMMs costing many times more. 6½ digits of resolution, 0.0015% basic 24-hr dcV accuracy and 1,000 readings/s direct to GPIB assure you of results that are accurate, fast, and repeatable.

Features:

- 61/2 digit resolution to 100 nV, 100 $\mu\Omega,$ 10 μHz
- Accuracy 0.0035% for DC, 0.06% for AC (1-year)
- True RMS AC Volts and Current
- 2- or 4-Wire Ω, Frequency/Period, Continuity, Diode Test
- 1000 readings/sec across the GPIB
- GPIB (SCPI) and RS-232 included

Please see Datasheet for complete details and specifications.

For more information, refer to multimeter manual that accompanies Test Syst

ATE for Engineering or Small Production Configurations

Use in regular office or small lab space

• Minimal footprint, power and cooling requirements allows use in engineering office space

Test Cell – Tester and Handler Docking

1

Test Cell (another example)

Load Board & Probe Card

The interface between the tester and the DUT is through Printed Circuit Boards:

1. Load Board or DIB

- DIB stands for Device Interface Board
- Interface for Packaged Parts
- 2. Probe Card or PIB
 - Also called PIB (Prober Interface Board)
 - Interface for Wafers

Probe Card

Mechanical Mounting of Test Head to Handler/Prober

□ "Soft Docking" or "Cable docking".

Requires precision mechanical alignment and clamping hardware.

ATE (Automatic Test Equipment) Option

- DC source and meter
 - High current and voltage
 - High accuracy and stability
 - Current and voltage serge protection
 - High speed slew and stability
 - Higi Power option
 - AWG signal sourcing and capturing capability
- AC AWG Signal source and capture
- RF Signal Generator and Capture
- Digital I/O pattern generation and capture
- High Speed Digital I/O interface SerDes, MiPi
- Memory test option ALPG
- Time Measurement

Advanced ATE Technology

Time-domain Reflectometer (TDR) for Digital Channel Skew

- Electronic instrument used to determine the characteristics of <u>electrical lines</u> by observing <u>reflected pulses</u>
- Used for matching line delay for a few 1000 digital channel in ATE system within few pico sec

Simple TDR made from lab equipment

- 1. 100 feet (30 m) of coaxial cable
- 2. <u>impedance</u> of 50 ohms.
- 3. The propagation velocity of this cable is approximately 66% of the speed of light in a vacuum.

LT Sim Step Pulse & 200ns Delay 50-0hm Transmission Line

Shielding and Guarding Structure

□ How to deal with Shielding and Guarding for device applications to reduce noise or leak

(Analog device application not an-347)

Figure 12. Possible grounds where system and source have differing ground potentials.

Circuitry to Provide a Guarded (Triaxial) Output

Figure 2.9. Circuitry to provide a guarded (triaxial) output.

DC – Kelvin Connection for Accuracy of Testing

Accurate Voltage/Current Driving and Measuring application

DC – Kelvin Connection for Accuracy of Testing

Figure 2.15. A Kelvin (or 4-wire) voltage measurement eliminates the effects of cable resistance by separating out the lines carrying the force current from the lines sensing the voltage.

Kelvin Power Supply

Kelvin Power Supply and Slew Control

🎾 LTspice - AD711 - Kelvin DC Source_v2

File Edit Hierarchy View Simulate Tools Window Help

Cohu

 \sim

Kelvin Power Supply V/I Meter Circuit

LTspice - AD711 - Kelvin DC Source_v2_IVmeter

File Edit Hierarchy View Simulate Tools Window Help

September 25, 2024 Page 55 – 0 ×

Kelvin Power Supply AWG Mode

🍠 LTspice - AD711 - Kelvin DC Source_v2_AWG.fft

File View Plot Settings Simulation Tools Window Help

¢ ∄ ☞ 🚔 ♥ ▶ ■ 🔟 🚍 🗟 Q Q Q 🐼 🏵 ጊ ∻ 🛛 🛊 3 ‡ 🖄 🛤 t 🛨 O 🖓 🖓 🖄 🖗 🔿 🤗 Q

φ.φ

🔨 AD711 - Kelvin DC Source_v2_AWG 🛣 AD711 - Kelvin DC Source_v2_AWG 🕍 AD711 - Kelvin DC Source_v2_AWG.fft

DC – Kelvin Connection for Accuracy of Testing

Figure 2.17. The Kelvin triaxial cable combines both the force and sense lines into a single cable.

Ground: Low Noise Ground Plane Design

□ Single or Separate Ground plane?

- Separated ground plane will capture AC or switching power supply noises
- Ground noise is directly coupled to converter input and output signal

Low and High Temperature Measurement Issues

Parametric Measurement Challenge on-wafer at low and high temperatures

- *High electrical noise* caused by the thermal control circuitry
- *Slow measurement times* due to parasitic capacitance
- *Large transient noise* after wafer chuck moves
- *Frost* induced moisture leakage

Noise Current for Standard Triaxial Wafer Chuck

As temperature varies over time

Standard Triaxial Chuck

Completely Guarded & Shielded Wafer Probe Environment

Page 61

Noise Current

for a Well-designed Low-noise Thermal Wafer Chuck

Low Noise Thermal Chuck

The Effect of Air Flow on Noise

Noise vs. Air Flow

A Unique Combination of All Test Capability

Accelerating time to yield and greater productivity through the test cell

Peak Yield/OEE

High frequency measurement accuracy Most responsive active thermal control AI-powered infrared inspection Test Cell accelerating time to peak yield

Peak Volume

High Vol Ramp

September 25, 2024 Page 64

1st Silicon

Q&A

Follow Us on Social Media

 \bigcirc

LinkedIninX (formerly Twitter)

Instagram

YouTube

Cohu, Inc. @cohu_inc @cohuinc

Cohu, Inc.

